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ABSTRACT: We report the giant spin current generation in CuTb alloys arising
from the spin Hall effect. The maximum spin Hall angle from our CuTb-based
magnetic heterostructures was found to be −0.35 ± 0.02 for Cu0.39Tb0.61. We find
that the contribution of skew scattering is larger than the side jump for lower Tb
concentrations (<14.9%), while the converse is true for higher Tb concentrations.
Additionally, we also studied the Gilbert damping parameter, spin diffusion
length, and spin-mixing conductance. Interfacial spin transparency was found to
be 0.55 ± 0.03 for the CoFeB/Cu0.53Tb0.47 interface. The spin diffusion length
and spin-mixing conductance of the Cu0.53Tb0.47 alloy are λsd = 2.5 ± 0.3 nm and
G↓↑ = (24.2 ± 1.0) × 1015 cm−2, respectively. Our results pave a way for rare-earth
metals to be used as a spin Hall material in highly efficient SOT devices.

KEYWORDS: spin Hall effect, spin−orbit coupling, spin−orbit torque, spin−orbit torque ferromagnetic resonance, rare-earth metal,
spin Hall angle

1. INTRODUCTION

Spintronic devices such as spin−orbit torque magnetic random
access memories and spin Hall nano-oscillators are key
components of next-generation magnetic storage and logic
devices because of their high response speed and low power
consumption.1−5 Among them, the spin Hall effect (SHE)
derived from the spin−orbit coupling (SOC) is a topic of
immense interest because it can generate a longitudinal spin
current when applying a lateral charge current, which is an
efficient route for magnetization manipulation.6−10 The spin
Hall angle represents the conversion efficiency of the charge
and spin current. A large spin Hall angle enables efficient
generation of the transfer torque and reduces the energy loss.
Moreover, the SHE plays an important role in exciting or
detecting the spin Seebeck effect.11−13 The large spin Hall
angle can also lead to a high spin Seebeck coefficient in the
magnon-driven spin Seebeck effect.14−16 Therefore, the search
for large spin Hall angles has long been a key focus in the field
of spintronics.17−20 To date, most studies have focused on
heavy metals (HMs) such as Pt,21−23 β-Ta,4 and β-W;24

diluted alloys of CuBi,25 CuPt,15,26 AuW,27 WHf,28 PtW,16

AuPt,17 and PtBi;18 topological insulators;29−31 and even
antiferromagnetic materials.32,33 The future development of
high-performance devices hinges on the discovery of new types
of large spin Hall angle materials.
Rare-earth metals have recently received considerable

attention because of their large SOC that arises from their
large spins and orbital angular momentum in f-electron atoms
and are expected to be a potential SOT source for spintronic

applications.34−36 Several recent studies have reported that the
spin Hall efficiency can be enhanced using rare-earth metals:
Wong et al. have determined a large spin−orbit torque
efficiency of −0.480 in Pt/[Co/Ni]2/Co/Tb multilayers.36

Ueda et al. conducted a study on Pt/Co/Gd multilayers and
explained that the large spin Hall efficiency stemmed from
Gd.35 However, because of the strong spin-pumping effect
caused by the strong SOC in heavy rare-earth materials, it is
difficult to extract the spin Hall angle by using spin−torque
ferromagnetic resonance. Reynolds et al. reported the lower
bounds for the spin Hall torque ratio for Gd, Dy, Ho, and Lu
by using a thin Hf spacer layer between the rare-earth and the
FM to reduce the magnetic damping.34 Therefore, it would be
particularly useful to be able to control not only the spin Hall
angle but also the magnetic damping.
In this work, we studied the giant spin Hall angle and

moderately low effective magnetic damping in CoFeB/
Cu1−xTbx bilayers. This material system was chosen for several
reasons. First of all, Cu-based alloys have been widely reported
for studying the effect of alloying on SHE.15,19,25,26 Second, the
Cu−Tb alloy can form a solid solution across a wide
composition range from the phase diagram,37 making it a
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suitable system to understand the mechanism of extrinsic SHE.
Furthermore, an amorphous Cu−Tb alloy thin film has been
reported by McGuire and Gambino,38 which can be beneficial
for pinning-free skyrmion dynamics because of the absence of
grains.28,39 By conducting spin−orbit torque ferromagnetic
resonance (ST-FMR) measurements, we show that the
maximum spin Hall angle of our CuTb-based magnetic
heterostructures was −0.35 ± 0.02 for Cu0.39Tb0.61. From the
extrinsic spin Hall resistivity induced by Tb, we found that the
skew-scattering contribution dominates the extrinsic SHE at
low Tb concentrations (x < 14.9%), whereas the side jump
contribution is dominant when x > 14.9%. By varying the
damping with CuTb thickness, we have determined the spin-
mixing conductance and spin diffusion length. The effective
spin-mixing conductance increases with increasing Tb
concentration. Meanwhile, the spin diffusion length is found
to increase with decreasing Tb concentrations. Furthermore,
using the drift-diffusion model, we have estimated the
interfacial spin transparency. These results provide important
information on the large SHE induced by extrinsic SHE
mechanisms, opening a way for rare-earth metals to be used as
a spin Hall material in highly efficient SOT devices.

2. EXPERIMENT AND METHOD

Thin film stacks of Co40Fe40B20 (20 nm)/Cu1−xTbx (10 nm)
were deposited on thermally oxidized Si(001) substrates by
magnetron sputtering. The growth was carried out at room
temperature with a base pressure below 5 × 10−8 mTorr and a
deposition pressure of 2 mTorr. Cu1−xTbx was deposited by
cosputtering Cu and Tb targets. The sputtering power of the
two targets was calibrated to tune the Tb concentration (x) in
the Cu1−xTbx alloy. Subsequently, the stacks were patterned
into strips (of length 50 μm and width 10 μm) using a
combination of electron beam lithography and Ar-ion milling
techniques. Ta (5 nm)/Cu (200 nm)/Pt (3 nm) electrodes
were also fabricated using electron beam lithography and DC
magnetron sputtering. The crystalline structure was examined
by X-ray diffraction (XRD) and was found to be amorphous
(refer to the Supporting Information, S1 XRD). The saturation
magnetization was evaluated by using the vibrating sample
magnetometer. The composition of alloy films was determined
by energy-dispersive X-ray spectroscopy (EDX). A signal
generator (Keysight N5183B) and a network analyzer were
used to provide the radio frequency (RF) current for the ST-
FMR and conventional FMR measurements, respectively. For
ST-FMR studies, the DC voltage was measured with a Keithley

2000 multimeter. All the measurements were performed at
room temperature.

3. RESULTS AND DISCUSSION

Figure 1a−d shows the CoFeB thickness t dependence of the
magnetic moment per unit area at saturation mS for x = 0.05,
0.13, 0.22, and 0.47, respectively. As the mS is expressed as
MS(t − td), where MS is the saturation magnetization and td is
the magnetic dead layer thickness in CoFeB, we evaluate MS
from the slope and td from the horizontal intercept by fitting
with a linear function.40 The effective saturation magnetization
of CoFeB in the CoFeB/Cu0.95Tb0.05 system is found to be MS
= 1049.8 emu/cc with a magnetic dead layer td = 1.55 nm. The
thickness of the dead layer td, saturation magnetization MS, and
coercivity Hc are summarized in Figure 1e−g. As the
concentration of Tb increases, Hc increases, while both MS
and td decrease. The thickness of the magnetic dead layer and
saturation magnetization were found to be 0.35 nm and 932.9
emu/cc, respectively, for Cu0.53Tb0.47. The reduction in the MS
value can be potentially due to compensation from the FM
properties of Tb as the Tb atoms near the adjacent CoFeB
atoms induces a non-zero magnetic moment. At the interface,
the magnetic moments of Tb align antiparallel with the
magnetic moments of CoFeB, leading to an antiferromagnetic
coupling between the FM layer and Tb.36,41,42 Additionally,
the antiferromagnetic coupling gives rise to enhanced Hc. The
magnetic dead layer could be due to the diffusion and
intermixing at the CoFeB/Cu1−xTbx interface, which indicates
a better interface in the Tb-rich alloy.
The schematic diagram of the ST-FMR measurement setup

is illustrated in Figure 2. A RF current Ic,rf is applied to the
structure through the RF port of a bias tee to generate a
microwave frequency SOT on the ferromagnetic layers, which
induces magnetization precession. This leads to an oscillation
of the longitudinal resistance due to the spin Hall magneto-
resistance effect.22 The rectified voltage Vmix due to the mixing
of RF current and the time-varying resistance is detected by
using a lock-in amplifier. The ST-FMR spectra were measured
for microwave frequencies from 6 to 25 GHz for all samples
without an external DC bias. An in-plane magnetic field was
applied at an angle of 45o to maximize the ST-FMR signal and
swept from 0 to 5000 Oe while keeping the microwave
frequency constant for each measured frequency. The input
microwave power was varied from 10 to 20 dBm, and the
measured DC voltage was proportional to the applied power,
suggesting that the induced precession was in the small angle

Figure 1. Measured moment per unit area of CoFeB/Cu1−xTbx films as a function of t for x = 0.05 (a), 0.13 (b), 0.22 (c), and 0.47 (d). Magnetic
dead layer thickness (e), saturation magnetization MS (f), and coercivity Hc (g) dependence on Tb concentration in CoFeB/Cu1−xTbx films.
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regime23,43 (refer to the Supporting Information, S3 Input RF
power dependence). All measurements were performed at an
RF power of 18 dBm.
Figure 3a−e illustrates the normalized voltages (Vmix)

measured at 13 GHz for x = 0.05, 0.13, 0.22, 0.47, and 0.61.
The data were normalized to the maximum value of Vmix. The
gray dashed line indicates the corresponding maximum of Vmix.
The symmetric and antisymmetric Lorentzian components are
presented in Figure 3a−e as the red and blue curves,
respectively. The ST-FMR curves are fitted with symmetric
and antisymmetric Lorentzian functions, according to23,26,33
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where ΔH is the full width at half-maximum and Hres is the
resonance magnetic field. The symmetric and antisymmetric
parameters VS and VA are the amplitudes of the symmetric and
antisymmetric components of the mixing voltage, respectively.
Here, the symmetric component is proportional to the
damping-like torque, and the antisymmetric component is
due to the sum of the Oersted field torque and the field-like
effective torque.23,44 The damping-like torque and the field-like

torque can be expressed as m × (σ̂ × m) and m × σ̂,
respectively, where m is the magnetization unit vector and σ̂
denotes the direction of the injected spin moment.22 The
damping-like torque is generated by the spin current converted
from the charge current flowing in the HM layer because of the
SHE. As shown in Figure 3f, with increasing concentration of
Tb, the magnitude of VS/VA increases, which suggests that the
spin Hall angle increases with Tb concentration.
According to the ST-FMR theory, the spin Hall angle (θSH)

is the ratio of the spin current density to the RF current
density. The ratio can be obtained from the line shape of the
ST-FMR spectra for a qualitative dependence of the θSH by
assuming that the field-like torque contribution is negligibly
small.23,33 For the self-calibrated method, the θSH is given by
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where JS is the spin current density generated within the HM,
JC is the applied charge current density, t is the FM layer
thickness, d is the HM layer thickness, and Meff is the effective
magnetization, which can be extracted by fitting the resonance
frequency f res as a function of Hres using the Kittel formula, f res
= (γ/2π)[Hres(Hres + 4πMeff)]

1/2.
The calculated θSH are shown in Figure 4a. θSH was found to

increase with increasing Tb concentration. This is expected, as
the SHE arises from SOC and Tb is known to have a much
larger SOC compared to Cu.26 Furthermore, we observed that
Cu1−xTbx with 61% Tb can give rise to θSH of −0.35 ± 0.02,
which is larger than the reported value of −0.30 found in β-
W.24 With a further increase in the Tb concentration, the
voltage signals become weak, leading to large noise of the spin
Hall angle.
To determine the contribution of the extrinsic SHA due to

Tb impurities, the extrinsic spin Hall resistivity induced by Tb
was calculated and fitted using eq 3.26 As the intrinsic SHE
originates from the effect of SOC on the electronic band
structure of hosts when in the dilute regime according to
previous reports,45−47 it can be assumed that the intrinsic spin
Hall resistivity of CuTb is constant at low Tb concentrations.
The electrical resistivity ρ of the Cu1−xTbx layer increases with
increasing Tb concentration, as shown in the inset of Figure
4b. The |ρSH

imp| was calculated from

Figure 2. Schematic circuit for the ST-FMR measurement. M and H
are the FM magnetization and applied magnetic field vectors,
respectively. The τFL + τOe term denotes the sum of the field-like
torque and the Oersted field torque, while τDL is the damping-like
torque. JC and JS are the charge current density and the spin current
density, respectively. Top left shows the optical image of the device
with contact pads.

Figure 3. Normalized ST-FMR spectra of CoFeB/Cu1−xTbx with x = 0.05 (a), 0.13 (b), 0.22 (c), 0.47 (d), and 0.61 (e). (f) VS/VA as a function of
x.
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where θSH,Cu is the spin Hall angle of pure Cu, ρimp = ρCuTb −
ρCu is the resistance induced by Tb impurities, θSH

SS is the
contributions of the skew scattering, and σSH

SJ is the
contributions of the side jump.
The extrinsic spin Hall resistivity as a function of ρimp is

shown in Figure 4b. From the fitting, we extract the following
values: θSH

SS = 0.1059 and σSH
SJ = 0.0016 μΩ−1 cm−1. When ρimp

= θSH
SS /σSH

SJ = 66.2 μΩ cm, which corresponds to x ≈ 14.9%,
both the skew scattering and side jump contribution are equal.
Therefore, skew scattering is dominant in the dilute limit of
impurity concentration (x < 14.9%), while the side jump
contributions play a significant role at high impurity
concentrations (x > 14.9%), which agrees well with the
previous reports.26,45−47

From the full width at half-maximum ΔH of ST-FMR
spectra, the information about the damping factor (αeff) can be
obtained. The FMR linewidth of thin films has three main
contributions: (1) an inhomogeneity term (ΔHinh) which is
independent of the frequency, (2) Gilbert damping term
(ΔHGil) which is intrinsic in nature and frequency-dependent,
and (3) a two-magnon scattering term (ΔH2mag) which is
extrinsic in nature and frequency-dependent.48,49 The overall
linewidth can be written as50

H H H Hinh Gil 2magΔ = Δ + Δ + Δ (4)

Starting from the FMR linewidth, αeff can be obtained from a
linear fit of ΔH50,51

H f H
f

( )
4

inh
0γ μ

Δ = Δ +
πα

| | (5)

where γ = (gμB)/ℏ is the gyromagnetic ratio, g is the
spectroscopic splitting factor, μB is the Bohr magneton, ℏ is the
reduced Planck’s constant, and μ0 is the permeability of free
space. The frequency dependence of ΔH is summarized in
Figure 5a. As Tb concentration increases, significant enhance-
ment was observed in the slope of ΔH. The frequency
dependence of ΔH for all the samples is linear, suggesting a
negligible contribution from the two magnon-scattering
mechanisms that would induce a nonlinear trend.49

The damping parameter was calculated using eq 5 for
different Tb alloy concentrations, as shown in Figure 5b. The
αeff values are in the range from 0.0045 ± 0.0002 to 0.0170 ±
0.0008, which are lower than previous reports.41,42 Increasing
the Tb concentration leads to significant enhancement of the
Gilbert damping parameter, which can be attributed to spin
pumping. A spin current is generated from the ferromagnetic
layer and diffuses into the nonmagnetic metallic layer when the
magnetization precesses. In this process, the ferromagnetic
layer loses the spin angular momentum, which results in
additional damping. In our study, the damping contribution
from the magnetic proximity effect is assumed to be negligibly
small as the interfacial effect would be minimal in our relatively
thick ferromagnetic layer.51−54

To determine the spin diffusion length (λsd) and the spin-
mixing conductance (G↓↑), a series of samples were fabricated
with a fixed CoFeB thickness of 20 nm and a varied Cu1−xTbx
thickness d. According to the spin pumping theory, the
dependence of the damping on adjacent HM layer thickness
can be described by51,55

Figure 4. (a) θSH for different Tb concentrations extracted from ST-FMR spectra. (b) |ρSH
imp| as a function of resistivity induced by Tb impurities.

The inset shows the electrical resistivity of Cu1−xTbx.

Figure 5. (a) FMR linewidths as a function of microwave frequency for different Tb concentrations. Solid lines were obtained by linear fits to the
data points. (b) Effective Gilbert damping factor (αeff) extracted from the ST-FMR linewidth as a function of different Tb concentrations.
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Figure 6a summarizes the damping due to spin pumping
with varying thickness. The solid lines are fits for each
composition. Damping was found to increase sharply in the
lower thickness regime before saturating at a higher thickness.
However, this exponential behavior for the enhanced damping
as a function of d is inconsistent with the magnetic proximity
effect-induced additional damping, which is a quasilinear
thickness dependence of damping.53,54 This indicates that
there is no evidence that the magnetic proximity effect affects
αeff. The spin diffusion length deteriorates with increasing Tb
concentration because of the strong SOC in Tb impurities that
result in spin relaxation.
From the fit for thickness dependence of each Tb

concentration, we calculated the diffusion length λsd, as plotted
in Figure 6b. The obtained λsd decreases from 16.8 ± 1.7 nm
for Cu0.95Tb0.05 to 2.5 ± 0.3 nm for Cu0.53Tb0.47 with the
increase of Tb concentration. The spin diffusion length of
Cu0.53Tb0.47 is comparable to that of Pt (λsd = 2.8 nm).53

However, it is much smaller than what was reported by Yue et
al.,41 which may be due to the strong scattering caused by Tb
impurities in our system, and this is consistent with other
reports on HM alloys such as CuIr56 and Au1−xPtx.

45 The spin-
mixing conductance for the CoFeB/Cu0.53Tb0.47 interface is
(24.2 ± 1.0) × 1015 cm−2, which is of the same order of
magnitude as the Py/Tb (GPy/Tb

↑↓ = 68 × 1015 cm−2) interface.41

It is to be noted that the voltage signal from the spin-pumping
effect (VSP) has a negligible effect on the symmetric
component of the voltage signal because of a large anisotropic
magnetoresistance (refer to the Supporting Information).57

Furthermore, a large interface spin transparency (T) is
required for low-energy consumption applications of spin
current in multilayered devices.58,59 The interfacial spin
transparency can be estimated from the drift-diffusion model57

( )
( )

T
G

G

tanh

coth

d

d h

2

2 e

sd

sd
2

CuTb

=
+

λ

λ λ ρ

↑↓

↑↓
(7)

The interface spin transparency of CoFeB/Cu0.53Tb0.47 was
estimated to be 0.55 ± 0.03, which is larger than that in
CoFeB/β-Ta (0.50)60 and comparable with the value of Co/Pt
interfaces (0.3−0.67).55

4. CONCLUSIONS

In summary, we demonstrated the enhancement of the spin
Hall angle by tuning the composition of CuTb alloy thin films.
The giant spin Hall angle in the CuTb alloy is due to the
strong spin−orbit interaction from the Tb impurities. We
found that the contribution of skew scattering dominates side
jump at lower Tb concentrations (<14.9%), while the side
jump contributions play a significant role at higher Tb
concentrations. We also obtained the spin diffusion length
and spin-mixing conductance for the CuTb alloy. Furthermore,
we extracted the interfacial spin transparency of CoFeB/
Cu0.53Tb0.47 as 0.55 ± 0.03, which is comparable with various
studied HM/FM interfaces. The giant θSH and high effective
spin-mixing conductance with moderate interfacial spin
transparency of CoFeB/Cu1−xTbx make it a key spin Hall
material in highly efficient SOT devices.
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